2.2: Simplifying Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    18334
    • 2.2: Simplifying Algebraic Expressions (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Apply the distributive property to simplify an algebraic expression.
    • Identify and combine like terms.

    Distributive Property

    The properties of real numbers are important in our study of algebra because a variable is simply a letter that represents a real number. In particular, the distributive property states that given any real numbers \(a, b,\) and \(c\),

    \[\color{Cerulean}{a}\color{black}{(b+c)=}\color{Cerulean}{a}\color{black}{b+}\color{Cerulean}{a}\color{black}{c}\]

    This property is applied when simplifying algebraic expressions. To demonstrate how it is used, we simplify \(2(5−3)\) in two ways, and observe the same correct result.

    Certainly, if the contents of the parentheses can be simplified, do that first. On the other hand, when the contents of parentheses cannot be simplified, multiply every term within the parentheses by the factor outside of the parentheses using the distributive property. Applying the distributive property allows you to multiply and remove the parentheses.

    Example \(\PageIndex{1}\)

    Simplify:

    \(5(7y+2)\).

    Solution:

    Multiply \(5\) times each term inside the parentheses.

    \(\begin{aligned}\color{Cerulean}{5}\color{black}{(7y+2)}&=\color{Cerulean}{5}\color{black}{\cdot 7y+}\color{Cerulean}{5}\color{black}{\cdot 2} \\ &=35y+10 \end{aligned}\)

    Answer:

    \(35y+10\)

    Example \(\PageIndex{2}\)

    Simplify:

    \(−3(2x^{2}+5x+1)\).

    Solution:

    Multiply \(−3\) times each of the coefficients of the terms inside the parentheses.

    Answer:

    \(-6x^{2}-15x-3\)

    Example \(\PageIndex{3}\)

    Simplify:

    \(5(−2a+5b)−2c\).

    Solution:

    Apply the distributive property by multiplying only the terms grouped within the parentheses by \(5\).

    2.2: Simplifying Algebraic Expressions (2)

    Figure \(\PageIndex{1}\)

    Answer:

    \(-10a+25b-2c\)

    Because multiplication is commutative, we can also write the distributive property in the following manner:

    \[(b+c)a=ba+ca\]

    Example \(\PageIndex{4}\)

    Simplify:

    \((3x−4y+1)⋅3\).

    Solution:

    Multiply each term within the parentheses by \(3\).

    \(\begin{aligned} (3x-4y+1)\cdot 3&=3x\color{Cerulean}{\cdot 3}\color{black}{-4y}\color{Cerulean}{\cdot 3}\color{black}{+1}\color{Cerulean}{\cdot 3} \\ &=9x-12y+3 \end{aligned}\)

    Answer:

    \(9x-12y+3\)

    Division in algebra is often indicated using the fraction bar rather than with the symbol (\(÷\)). And sometimes it is useful to rewrite expressions involving division as products:

    \(\begin{array}{c}{\color{black}{\frac{x}{\color{Cerulean}{5}}=\frac{1x}{5}=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot x}}} \\{\color{black}{\frac{\color{Cerulean}{3}\color{black}{ab}}{\color{Cerulean}{7}}=\frac{3}{7}\cdot \frac{ab}{1}=\color{Cerulean}{\frac{3}{7}}\color{black}{\cdot ab}}}\\{\frac{x+y}{\color{Cerulean}{3}}=\frac{1}{3}\cdot \frac{(x+y)}{1}=\color{Cerulean}{\frac{1}{3}}\color{black}{\cdot (x+y)}} \end{array}\)

    Rewriting algebraic expressions as products allows us to apply the distributive property.

    Example \(\PageIndex{5}\)

    Divide:

    \(\frac{25x^{2}-5x+10}{5}.

    Solution:

    First, treat this as \(\frac{1}{5}\) times the expression in the numerator and then distribute.

    \(\begin{aligned} \frac{25x^{2}-5x+10}{\color{Cerulean}{5}}&=\frac{1}{5}\cdot\frac{(25x^{2}-5x+10)}{1} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot (25x^{2}-5x+10)} &\color{Cerulean}{Multiply\:each\:term\:by\:\frac{1}{5}.} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 25x^{2}-}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 5x+}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 10}&\color{Cerulean}{Simplify.} \\ &=5x^{2}-x+2 \end{aligned}\)

    Alternate Solution:

    Think of \(5\) as a common denominator and divide each of the terms in the numerator by \(5\):

    \(\begin{aligned} \frac{25x^{2}-5x+10}{5}&=\frac{25x^{2}}{5}-\frac{5x}{5}+\frac{10}{5} \\ &=5x^{2}-x+2 \end{aligned}\)

    Answer:

    \(5x^{2}-x+2\)

    We will discuss the division of algebraic expressions in more detail as we progress through the course.

    Exercise \(\PageIndex{1}\)

    Simplify:

    \(\frac{1}{3}(−9x+27y−3)\).

    Answer

    \(-3x+9y-1\)

    Combining Like Terms

    Terms with the same variable parts are called like terms, or similar terms. Furthermore, constant terms are considered to be like terms. If an algebraic expression contains like terms, apply the distributive property as follows:

    \(\begin{array}{c}{2\color{Cerulean}{a}\color{black}{+3}\color{Cerulean}{a}\color{black}{=(2+3)}\color{Cerulean}{a}\color{black}{=5}\color{Cerulean}{a}}\\{7\color{Cerulean}{xy}\color{black}{-5}\color{Cerulean}{xy}\color{black}{=(7-5)}\color{Cerulean}{xy}\color{black}{=2}\color{Cerulean}{xy}}\\{10\color{Cerulean}{x^{2}}\color{black}{+4}\color{Cerulean}{x^{2}}\color{black}{-6}\color{Cerulean}{x^{2}}\color{black}{=(10+4-6)}\color{Cerulean}{x^{2}}\color{black}{=8}\color{Cerulean}{x^{2}}} \end{array}\)

    In other words, if the variable parts of terms are exactly the same, then we may add or subtract the coefficients to obtain the coefficient of a single term with the same variable part. This process is called combining like terms. For example,

    \(3a^{2}b+2a^{2}b=5a^{2}b\)

    Notice that the variable factors and their exponents do not change. Combining like terms in this manner, so that the expression contains no other similar terms, is called simplifying the expression. Use this idea to simplify algebraic expressions with multiple like terms.

    Example \(\PageIndex{6}\)

    Simplify:

    \(3a+2b−4a+9b\).

    Solution:

    Identify the like terms and combine them.

    \(\begin{aligned} 3a+2b-4a+9b&=3\color{Cerulean}{a}\color{black}{-4}\color{Cerulean}{a}\color{black}{+2}\color{OliveGreen}{b}\color{black}{+9}\color{OliveGreen}{b}&\color{Cerulean}{Commutative\:property\:of\:addition} \\ &=-1a+11b &\color{Cerulean}{Combine\:like\:terms.} \\ &=-a+11b \end{aligned}\)

    Answer:

    \(-a+11b\)

    In the previous example, rearranging the terms is typically performed mentally and is not shown in the presentation of the solution.

    Example \(\PageIndex{7}\)

    Simplify:

    \(x^{2}+3x+2+4x^{2}−5x−7\).

    Solution:

    Identify the like terms and add the corresponding coefficients.

    \(\begin{array}{lc}{\color{Cerulean}{\underline{1x^{2}}}\color{black}{+}\color{OliveGreen}{\underline{\underline{3x}}}\color{black}{+\underline{\underline{\underline{2}}}+}\color{Cerulean}{\underline{4x^{2}}}\color{black}{-}\color{OliveGreen}{\underline{\underline{5x}}}\color{black}{-\underline{\underline{\underline{7}}}}}&{\color{Cerulean}{Identify\:like\:terms.}}\\{=5x^{2}-2x-5}&{\color{Cerulean}{Combine\:like\:terms.}}\end{array}\)

    Answer:

    \(5x^{2}-2x-5\)

    Example \(\PageIndex{8}\)

    Simplify:

    \(5x^{2}y−3xy^{2}+4x^{2}y−2xy^{2}\).

    Solution:

    Remember to leave the variable factors and their exponents unchanged in the resulting combined term.

    \(\begin{array}{l}{\underline{5x^{2}y}-\underline{\underline{3xy^{2}}}+\underline{4x^{2}y}-\underline{\underline{2xy^{2}}}}\\{=9x^{2}y-5xy^{2}} \end{array}\)

    Answer:

    \(9x^{2}y-5xy^{2}\)

    Example \(\PageIndex{9}\)

    Simplify:

    \(\frac{1}{2}a−\frac{1}{3}b+\frac{3}{4}a+b\).

    To add the fractional coefficients, use equivalent coefficients with common denominators for each like term.

    \(\begin{aligned} \frac{1}{2}a-\frac{1}{3}b+\frac{3}{4}a+1b&=\frac{1}{2}a+\frac{3}{4}a-\frac{1}{3}b+1b \\ &=\frac{2}{4}a+\frac{3}{4}a-\frac{1}{3}b+\frac{3}{3}b \\&=\frac{5}{4}a+\frac{2}{3}b \end{aligned}\)

    Answer:

    \(\frac{5}{4}a+\frac{2}{3}b\)

    Example \(\PageIndex{10}\)

    Simplify:

    \(−12x(x+y)^{3}+26x(x+y)^{3}\).

    Solution:

    Consider the variable part to be \(x(x+y)^{3}\). Then this expression has two like terms with coefficients \(−12\) and \(26\).

    \(\begin{aligned} &-12x(x+y)^{3}+26x(x+y)^{3} &\color{Cerulean}{Add\:the\:coefficients.} \\ &=14x(x+y)^{3} \end{aligned}\)

    Answer:

    \(14x(x+y)^{3}\)

    Exercise \(\PageIndex{2}\)

    Simplify:

    \(−7x+8y−2x−3y\).

    Answer

    \(−9x+5y\)

    Distributive Property and Like Terms

    When simplifying, we will often have to combine like terms after we apply the distributive property. This step is consistent with the order of operations: multiplication before addition.

    Example \(\PageIndex{11}\)

    Simplify:

    \(2(3a−b)\)−\(7(−2a+3b)\).

    Solution:

    Distribute \(2\) and \(−7\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (3)

    Figure \(\PageIndex{2}\)

    Answer:

    \(20a-23b\)

    In the example above, it is important to point out that you can remove the parentheses and collect like terms because you multiply the second quantity by \(−7\), not just by \(7\). To correctly apply the distributive property, think of this as adding \(−7\) times the given quantity, \(2(3a−b)+(−7)(−2a+3b)\).

    Exercise \(\PageIndex{3}\)

    Simplify:

    \(−5(2x−3)+7x\).

    Answer

    \(-3x+15\)

    Often we will encounter algebraic expressions like \(+(a+b)\) or \(−(a+b)\). As we have seen, the coefficients are actually implied to be \(+1\) and \(−1\), respectively, and therefore, the distributive property applies using \(+1\) or \(–1\) as the factor. Multiply each term within the parentheses by these factors:

    \[+(a+b)=+1(a+b)=(+1)a+(+1)b=a+b\]

    \[-(a+b)=-1(a+b)=(-1)a+(-1)b=-a-b\]

    This leads to two useful properties,

    \[+(a+b)=a+b\]

    \[-(a+b)=-a-b\]

    Example \(\PageIndex{12}\)

    Simplify:

    \(5x−(−2x^{2}+3x−1)\).

    Solution:

    Multiply each term within the parentheses by \(−1\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (4)

    Figure \(\PageIndex{3}\)

    Answer:

    \(2x^{2}+2x+1\)

    When distributing a negative number, all of the signs within the parentheses will change. Note that \(5x\) in the example above is a separate term; hence the distributive property does not apply to it.

    Example \(\PageIndex{13}\)

    Simplify:

    \(5−2(x^{2}−4x−3)\).

    Solution:

    The order of operations requires that we multiply before subtracting. Therefore, distribute \(−2\) and then combine the constant terms. Subtracting \(5 − 2\) first leads to an incorrect result, as illustrated below:

    \(\begin{array}{c|c}{\underline{\color{red}{Incorrect!}}}&{\underline{\color{Cerulean}{Correct!}}}\\{\begin{aligned} &\color{red}{5-2}\color{black}{(x^{2}-4x-3)} \\ &=\color{red}{3}\color{black}{(x^{2}-4x-3)}\\&=3x^{2}-12x-9\quad\color{red}{x} \end{aligned}}&{\begin{aligned}&5\color{Cerulean}{-2}\color{black}{(x^{2}-4x-3)} \\ &=5\color{Cerulean}{-2}\color{black}{x^{2}}\color{Cerulean}{+8}\color{black}{x}\color{Cerulean}{+6} \\ &=-2x^{2}+8x+11\quad\color{Cerulean}{\checkmark} \end{aligned}} \end{array}\)

    Answer:

    \(-2x^{2}+8x+11\)

    Note

    It is worth repeating that you must follow the order of operations: multiply and divide before adding and subtracting!

    Exercise \(\PageIndex{4}\)

    Simplify:

    \(8−3(−x^{2}+2x−7)\).

    Answer

    \(3x^{2}-6x+29\)

    Example \(\PageIndex{14}\)

    Subtract \(3x−2\) from twice the quantity \(−4x^{2}+2x−8\).

    Solution:

    First, group each expression and treat each as a quantity:

    \((3x-2)\qquad\text{and}\qquad (-4x^{2}+2x-8)\)

    Next, identify the key words and translate them into a mathematical expression.

    2.2: Simplifying Algebraic Expressions (5)

    Figure \(\PageIndex{4}\)

    Finally, simplify the resulting expression.

    Answer:

    \(-8x^{2}+x-14\)

    Key Takeaways

    • The properties of real numbers apply to algebraic expressions, because variables are simply representations of unknown real numbers.
    • Combine like terms, or terms with the same variable part, to simplify expressions.
    • Use the distributive property when multiplying grouped algebraic expressions, \(a(b+c)=ab+ac\).
    • It is a best practice to apply the distributive property only when the expression within the grouping is completely simplified.
    • After applying the distributive property, eliminate the parentheses and then combine any like terms.
    • Always use the order of operations when simplifying.
    Exercise \(\PageIndex{5}\) Distributive Property

    Multiply.

    1. \(3(3x−2)\)
    2. \(12(−5y+1)\)
    3. \(−2(x+1)\)
    4. \(5(a−b)\)
    5. \(\frac{5}{8}(8x−16)\)
    6. \(−\frac{3}{5}(10x−5)\)
    7. \((2x+3)⋅2\)
    8. \((5x−1)⋅5\)
    9. \((−x+7)(−3)\)
    10. \((−8x+1)(−2)\)
    11. \(−(2a−3b)\)
    12. \(−(x−1)\)
    13. \(\frac{1}{3}(2x+5)\)
    14. \(−\frac{3}{4}(y−2)\)
    15. \(−3(2a+5b−c)\)
    16. \(−(2y^{2}−5y+7)\)
    17. \(5(y^{2}−6y−9)\)
    18. \(−6(5x^{2}+2x−1)\)
    19. \(7x^{2}−(3x−11)\)
    20. \(−(2a−3b)+c\)
    21. \(3(7x^{2}−2x)−3\)
    22. \(\frac{1}{2}(4a^{2}−6a+4)\)
    23. \(−\frac{1}{3}(9y^{2}−3y+27)\)
    24. \((5x^{2}−7x+9)(−5)\)
    25. \(6(\frac{1}{3}x^{2}−\frac{1}{6}x+\frac{1}{2})\)
    26. \(−2(3x^{3}−2x^{2}+x−3)\)
    27. \(\frac{20x+30y−10z}{10}\)
    28. \(\frac{−4a+20b−8c}{4}\)
    29. \(\frac{3x^{2}−9x+81}{−3}\)
    30. \(\frac{15y^{2}+20y−5}{5}\)
    Answer

    1. \(9x−6 \)

    3. \(−2x−2 \)

    5. \(5x−10 \)

    7. \(4x+6 \)

    9. \(3x−21 \)

    11. \(−2a+3b\)

    13. \(\frac{2}{3}x+\frac{5}{3}\)

    15. \(−6a−15b+3c\)

    17. \(5y^{2}−30y−45\)

    19. \(7x^{2}−3x+11\)

    21. \(21x^{2}−6x−3\)

    23. \(−3y^{2}+y−9\)

    25. \(2x^{2}−x+3\)

    27. \(2x+3y−z\)

    29. \(−x^{2}+3x−27\)

    Exercise \(\PageIndex{6}\) Distributive Property

    Translate the following sentences into algebraic expressions and then simplify.

    1. Simplify two times the expression \(25x^{2}−9\).
    2. Simplify the opposite of the expression \(6x^{2}+5x−1\).
    3. Simplify the product of \(5\) and \(x^{2}−8\).
    4. Simplify the product of \(−3\) and \(−2x^{2}+x−8\).
    Answer

    1. \(50x^{2}−18\)

    3. \(5x^{2}−40\)

    Exercise \(\PageIndex{7}\) Combining Like Terms

    Simplify.

    1. \(2x−3x\)
    2. \(−2a+5a−12a\)
    3. \(10y−30−15y\)
    4. \(\frac{1}{3}x+\frac{5}{12}x\)
    5. \(−\frac{1}{4}x+\frac{4}{5}+\frac{3}{8}x\)
    6. \(2x−4x+7x−x\)
    7. \(−3y−2y+10y−4y\)
    8. \(5x−7x+8y+2y\)
    9. \(−8α+2β−5α−6β\)
    10. \(−6α+7β−2α+β\)
    11. \(3x+5−2y+7−5x+3y\)
    12. \(–y+8x−3+14x+1−y\)
    13. \(4xy−6+2xy+8\)
    14. \(−12ab−3+4ab−20\)
    15. \(\frac{1}{3}x−\frac{2}{5}y+\frac{2}{3}x−\frac{3}{5}y\)
    16. \(\frac{3}{8}a−\frac{2}{7}b−\frac{1}{4}a+\frac{3}{14}b\)
    17. \(−4x^{2}−3xy+7+4x^{2}−5xy−3\)
    18. \(x^{2}+y^{2}−2xy−x^{2}+5xy−y^{2}\)
    19. \(x^{2}−y^{2}+2x^{2}−3y\)
    20. \(\frac{1}{2}x^{2}−\frac{2}{3}y^{2}−\frac{1}{8}x^{2}+\frac{1}{5}y^{2}\)
    21. \(\frac{3}{16}a^{2}−\frac{4}{5}+\frac{1}{4}a^{2}−\frac{1}{4}\)
    22. \(\frac{1}{5}y^{2}−\frac{3}{4}+\frac{7}{10}y^{2}−\frac{1}{2}\)
    23. \(6x^{2}y−3xy^{2}+2x^{2}y−5xy^{2}\)
    24. \(12x^{2}y^{2}+3xy−13x^{2}y^{2}+10xy\)
    25. \(−ab^{2}+a^{2}b−2ab^{2}+5a^{2}b\)
    26. \(m^{2}n^{2}−mn+mn−3m^{2}n+4m^{2}n^{2}\)
    27. \(2(x+y)^{2}+3(x+y)^{2}\)
    28. \(\frac{1}{5}(x+2)^{3}−\frac{2}{3}(x+2)^{3}\)
    29. \(−3x(x^{2}−1)+5x(x^{2}−1)\)
    30. \(5(x−3)−8(x−3)\)
    31. \(−14(2x+7)+6(2x+7)\)
    32. \(4xy(x+2)^{2}−9xy(x+2)^{2}+xy(x+2)^{2}\)
    Answer

    1. \(−x\)

    3. \(−5y−30\)

    5. \(\frac{1}{8}x+\frac{4}{5}\)

    7. \(y\)

    9. \(−13α−4β\)

    11. \(−2x+y+12\)

    13. \(6xy+2\)

    15. \(x−y\)

    17. \(−8xy+4\)

    19. \(3x^{2}−y^{2}−3y\)

    21. \(\frac{7}{16}a^{2}−\frac{21}{20}\)

    23. \(8x^{2}y−8xy^{2}\)

    25. \(6a^{2}b−3ab^{2}\)

    27. \(5(x+y)^{2}\)

    29. \(2x(x^{2}−1)\)

    31. \(−8(2x+7)\)

    Exercise \(\PageIndex{8}\) Mixed Practice

    Simplify.

    1. \(5(2x−3)+7\)
    2. \(−2(4y+2)−3y\)
    3. \(5x−2(4x−5)\)
    4. \(3−(2x+7)\)
    5. \(2x−(3x−4y−1)\)
    6. \((10y−8)−(40x+20y−7)\)
    7. \(\frac{1}{2}y−\frac{3}{4}x−(\frac{2}{3}y−\frac{1}{5}x)\)
    8. \(\frac{1}{5}a−\frac{3}{4}b+\frac{3}{15}a−\frac{1}{2}b\)
    9. \(\frac{2}{3}(x−y)+x−2y\)
    10. \(−\frac{1}{3}(6x−1)+\frac{1}{2}(4y−1)−(−2x+2y−\frac{1}{6})\)
    11. \((2x^{2}−7x+1)+(x^{2}+7x−5)\)
    12. \(6(−2x^{2}+3x−1)+10x^{2}−5x\)
    13. \(−(x^{2}−3x+8)+x^{2}−12\)
    14. \(2(3a−4b)+4(−2a+3b)\)
    15. \(−7(10x−7y)−6(8x+4y)\)
    16. \(10(6x−9)−(80x−35)\)
    17. \(10−5(x^{2}−3x−1)\)
    18. \(4+6(y^{2}−9)\)
    19. \(\frac{3}{4}x−(\frac{1}{2}x^{2}+\frac{2}{3}x−\frac{7}{5})\)
    20. \(−\frac{7}{3}x^{2}+(−\frac{1}{6}x^{2}+7x−1)\)
    21. \((2y^{2}−3y+1)−(5y^{2}+10y−7)\)
    22. \((−10a^{2}−b^{2}+c)+(12a^{2}+b^{2}−4c)\)
    23. \(−4(2x^{2}+3x−2)+5(x^{2}−4x−1)\)
    24. \(2(3x^{2}−7x+1)−3(x^{2}+5x−1)\)
    25. \(x^{2}y+3xy^{2}−(2x^{2}y−xy^{2})\)
    26. \(3(x^{2}y^{2}−12xy)−(7x^{2}y^{2}−20xy+18)\)
    27. \(3−5(ab−3)+2(ba−4)\)
    28. \(−9−2(xy+7)−(yx−1)\)
    29. \(−5(4α−2β+1)+10(α−3β+2)\)
    30. \(\frac{1}{2}(100α^{2}−50αβ+2β^{2})−\frac{1}{5}(50α^{2}+10αβ−5β^{2})\)
    Answer

    1. \(10x−8\)

    3. \(−3x+10\)

    5. \(−x+4y+1\)

    7. \(−\frac{11}{20}x−\frac{1}{6}y\)

    9. \(\frac{5}{3}x−\frac{8}{3}y\)

    11. \(3x^{2}−4\)

    13. \(3x−20\)

    15. \(−118x+25y\)

    17. \(−5x^{2}+15x+15\)

    19. \(−\frac{1}{2}x^{2}+\frac{1}{12}x+\frac{7}{5}\)

    21. \(−3y^{2}−13y+8\)

    23. \(−3x^{2}−32x+3\)

    25. \(−x^{2}y+4xy^{2}\)

    27. \(−3ab+10\)

    29. \(−10α−20β+15\)

    Exercise \(\PageIndex{9}\) Mixed Practice

    Translate the following sentences into algebraic expressions and then simplify.

    1. What is the difference of \(3x−4\) and \(−2x+5\)?
    2. Subtract \(2x−3\) from \(5x+7\).
    3. Subtract \(4x+3\) from twice the quantity \(x−2\).
    4. Subtract three times the quantity \(−x+8\) from \(10x−9\).
    Answer

    1. \(5x-9\)

    3. \(-2x-7\)

    Exercise \(\PageIndex{10}\) Discussion Board Topics
    1. Do we need a distributive property for division, \((a+b)÷c\)? Explain.
    2. Do we need a separate distributive property for three terms, \(a(b+c+d)\)? Explain.
    3. Explain how to subtract one expression from another. Give some examples and demonstrate the importance of the order in which subtraction is performed.
    4. Given the algebraic expression \(8−5(3x+4)\), explain why subtracting \(8−5\) is not the first step.
    5. Can you apply the distributive property to the expression \(5(abc)\)? Explain why or why not and give some examples.
    6. How can you check to see if you have simplified an expression correctly? Give some examples.
    Answer

    1. Answers may vary

    3. Answers may vary

    5. Answers may vary

    2.2: Simplifying Algebraic Expressions (2024)

    FAQs

    How do you simplify expressions in 7th grade math? ›

    An expression like 2x+3y+4x+7y can be simplified by combining like terms. Also, the terms 2x and 3y are unlike terms; we cannot simplify any expression with unlike terms because the variables are different. The term 2x= x+x or 2*x.. To simplify a linear expression, add or subtract like terms.

    What grade level is simplifying algebraic expressions? ›

    Grade 8 and high school students need to add or subtract the like terms to simplify each polynomial expression. Express the algebraic expression in the simplest form. These printable worksheets contain algebraic expressions with positive exponents. Apply the laws of exponents to simplify the expressions.

    How do I simplify in math? ›

    How do you simplify mathematical expressions? Order of operations play a major role in simplifying mathematical operations. The correct order of operations is: terms in parentheses, exponents, multiplication, division, addition, and, finally, subtraction. A handy acronym you can use to remember this is PEMDAS.

    How do I simplify the expression? ›

    To simplify expressions, one must combine all like terms and solve all specified brackets, if any, until they are left with unlike terms that cannot be further reduced in the simplified expression. As a result of simplify algebraic expressions, the resulting value is that mathematical expression's final product.

    How do you simplify expressions examples? ›

    Simplifying an algebraic expression means writing the expression in the most basic way possible by eliminating parentheses and combining like terms. For example, to simplify 3x + 6x + 9x, add the like terms: 3x + 6x + 9x = 18x.

    What is an example of an algebraic expression? ›

    Algebraic expressions include at least one variable and at least one operation (addition, subtraction, multiplication, division). For example, 2(x + 8y) is an algebraic expression.

    Does simplify mean solve in algebra? ›

    Simplifying an expression is just another way to say solving a math problem. When you simplify an expression, you're basically trying to write it in the simplest way possible. At the end, there shouldn't be any more adding, subtracting, multiplying, or dividing left to do. For example, take this expression: 4 + 6 + 5.

    Does 7th grade do algebra? ›

    In many places it's become a fundamental part of the middle school math curriculum, too. In recent years, more students have begun taking Algebra 1 in eighth or even seventh grade – something that was fairly uncommon just three decades ago, when the vast majority of students were taking it in high school.

    What grade do most kids take algebra? ›

    If you follow the standard high school curriculum of the USA, you are required to take Algebra 1 in 9th grade, Geometry in 10th grade, Algebra 2 in 11th grade, and Pre-calculus in 12th grade.

    References

    Top Articles
    Komplettlösung: Kapitel 1 mit Tipps | Lost Lands 3: Der Goldene Fluch
    Lost Lands 3 Full Walkthrough (Golden Curse)
    Zuercher Portal Inmates Clinton Iowa
    Navin Dimond Net Worth
    Botw Royal Guard
    The Menu Showtimes Near Regal Edwards Ontario Mountain Village
    Stolen Touches Neva Altaj Read Online Free
    Scriblr Apa
    One Hour Rosemary Focaccia Bread
    Abcm Corp Training Reliaslearning
    My Happy Feet Shoes Review: How I Finally Got Relief from Years of Heel Pain - 33rd Square
    Hailie Deegan News, Rumors, & NASCAR Updates
    Stellaris Mid Game
    Varsity Competition Results 2022
    Sermon Collections, Sermons, Videos, PowerPoint Templates, Backgrounds
    Best Amsterdam Neighborhoods for Expats: Top 9 Picks
    Estrella Satánica Emoji
    라이키 유출
    Craigslist Chester Sc
    Xiom Vega X Review & Playtesting • Racket Insight
    Sodexo Northern Portal
    How to Be an Extra in a Movie (and What to Expect)
    Dr Seuss Star Bellied Sneetches Pdf
    Drys Pharmacy
    craigslist: northern MI jobs, apartments, for sale, services, community, and events
    Used Travel Trailers Under $5000 Craigslist
    Best Restaurants In Lynnwood
    Www.statefarm
    Ethos West Mifflin
    Case Overview: SAMA IM01 – SFF.Network
    Jessica Renee Johnson Update 2023
    Zuercher Portal Inmates Kershaw County
    Nikki Porsche Girl Head
    Bing Chilling Copypasta - Ricky Spears
    Speedstepper
    Most Popular Pub food in Lipetsk, Lipetsk Oblast, Russia
    Www.playgd.mobi Wallet
    Codex - Chaos Space Marines 9th Ed (Solo Reglas) - PDFCOFFEE.COM
    Arcadian Crossword Puzzles
    Papa Louie When Pizzas Attack Unblocked
    House Party 2023 Showtimes Near Mjr Chesterfield
    Plus Portal Ibn Seena Academy
    Avalon Hope Joi
    Skip The Games Albany
    Bfads 2022 Walmart
    Dr Seuss Star Bellied Sneetches Pdf
    Publix Employee Handbook Pdf
    Craigs List Williamsport
    5613192063
    Function Calculator - eMathHelp
    Breckie Hill Shower Gif
    Only Partly Forgotten Wotlk
    Latest Posts
    Article information

    Author: Francesca Jacobs Ret

    Last Updated:

    Views: 6161

    Rating: 4.8 / 5 (68 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Francesca Jacobs Ret

    Birthday: 1996-12-09

    Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

    Phone: +2296092334654

    Job: Technology Architect

    Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

    Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.